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a b s t r a c t

To facilitate an in-depth process understanding, and offer opportunities for developing control strate-
gies to ensure product quality, a combination of experimental design, optimization and multivariate
techniques was integrated into the process development of a drug product. A process DOE was used to
evaluate effects of the design factors on manufacturability and final product CQAs, and establish design
space to ensure desired CQAs. Two types of analyses were performed to extract maximal information,
DOE effect & response surface analysis and multivariate analysis (PCA and PLS). The DOE effect analysis
was used to evaluate the interactions and effects of three design factors (water amount, wet massing
time and lubrication time), on response variables (blend flow, compressibility and tablet dissolution).
The design space was established by the combined use of DOE, optimization and multivariate analysis to
Design space
Critical process parameter (CPP)
Critical quality attribute (CQA)

ensure desired CQAs. Multivariate analysis of all variables from the DOE batches was conducted to study
relationships between the variables and to evaluate the impact of material attributes/process param-
eters on manufacturability and final product CQAs. The integrated multivariate approach exemplifies
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. Introduction

Pharmaceutical products and processes are complex and mul-
ivariate by nature. Scientific understanding of the relevant

ulti-factorial relationships (e.g. between formulation, process
nd quality attributes) usually requires the use of multivariate
pproaches, such as statistical design of experiments, response
urface methodology, optimization and multivariate data analy-
is or chemometrics in conjunction with knowledge management
ystems. Much of the published material in the past highlights
he usefulness of experimental design, but the combined use of
OE, optimization and multivariate data analysis are relatively

ew when applied to pharmaceutical product and process develop-
ent (Bolhuis et al., 1995; Lindberg and Lundstedt, 1995; Hwang

t al., 1998; Voinovich et al., 1999; Westerhuis and Coenegracht,
999; Gabrielsson et al., 2002; Xie et al., 2007; Naelapaa et al.,
008). In this context, multivariate data analysis is referred to

he application of multivariate techniques such as principal com-
onent analysis (PCA) and partial least squares (PLS) specifically,
hough experimental design and response surface analysis is essen-
ially also a multivariate approach. It is important to recognize that
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nd tools to drug product and process development.
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multivariate techniques such as PCA and PLS can handle a large (vir-
tually unlimited) number of variables simultaneously, while DOE
effect/response surface analysis deals with a limited number of
variables due to limited experimental runs that can be afforded
in practice. Multivariate data analysis can be considered a comple-
mentary tool to DOE effect and response surface analysis, providing
additional information as well as confirmatory information about
the product and processes. When combined, the integrated mul-
tivariate approach provides a more powerful means to elucidate
complex multivariate relationships in pharmaceutical product and
process development.

As part of the effort in developing robust drug product and pro-
cess within the framework of quality by design (QbD) and process
analytical technology (PAT), the integrated multivariate approach
has been employed during the entire late-stage of this drug product.
The flow diagram, Fig. 1, illustrates the major steps of the holistic
and risk-based QbD approach used to develop this drug product
in accordance with ICH Q8, Q9, Q10 and FDA PAT guidance (FDA,
2004; ICH, 2005; ICH, 2008a,b). The holistic QbD approach began
with a predefined target product profile (TPP), and applies vari-

ous principles and tools at different stages to better understand
the product and processes (ICH, 2008a,b; CMC-IM, 2008; Cook et
al., 2009). Quality risk assessment (QRA) tools, such as risk filter-
ing, fishbone diagram, and FMEA, were applied to identify an initial
list of potential CQAs and CPPs, performed in accordance with ICH

http://www.sciencedirect.com/science/journal/03785173
http://www.elsevier.com/locate/ijpharm
mailto:huangj16@wyeth.com
dx.doi.org/10.1016/j.ijpharm.2009.07.031
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Fig. 1. A quality by design approac

9 guidance (ICH, 2005; ICH, 2008a,b). It should be noted that
QAs in this context refer to quality attributes of raw material,

ntermediate or final product. The terms, intermediate CQAs and
anufacturability CQAs, are interchangeable. After QRA, several

creening DOEs were performed to further narrow down the list
f quality attributes and potential CPPs that impact intermediate
nd final product quality attributes.

This paper covers the continual study following QRA and screen-
ng DOEs, which includes an optimization DOE campaign, in
onjunction with multivariate data analysis, to achieve enhanced
rocess understanding and establish design space. A process opti-
ization DOE was used to evaluate effects of the design factors

n manufacturability and final product CQAs such as tablet blend
ow and tablet dissolution, and establish design space to ensure
he desired CQAs. The multivariate analysis of all available variables
rom the DOE campaign was conducted to study multivariate rela-
ionships of all variables from raw materials, intermediates, various
nit operations to final product. It should be noted that many vari-
bles which were not originally systematically placed in the DOE
an be analyzed using multivariate techniques such as PCA/PLS to
rovide increased understanding of the entire tablet manufacturing
rocess holistically.

. Materials and methods

.1. Design of experiments

Prior to this optimization DOE campaign, quality risk assess-
ent, historical data analysis of previous development batches

nd several screening DOE analysis have identified that high shear
et granulation is the most critical unit operation that impacts
ownstream intermediate and final product quality attributes.
hree critical process parameters were selected as design factors:
ranulation water amount and wet massing time identified from
ranulation process, and lubrication time from magnesium stearate
ubrication operation. The ultimate goal of the DOE was to optimize
hree critical process parameters to achieve desired flowability,
ompressibility and dissolution profiles. A hybrid response sur-

ace design with 13 experimental runs was ultimately chosen to
onserve active pharmaceutical ingredient (API). See Table 1.

The hybrid design is a combination of a central composite design
or the first k-1 factors (2 in this case) and a rotatable or nearly

able 1
ybrid design with three factors, and three center points.

Batch/run Water amount
(g)

Wet massing
time (min)

Lubrication time
(min)

1a 268.7 1 3
2a 306.3 4 2
3a 268.7 5 3
4a 268.7 3 1
5a 268.7 3 5

6a (center point) 287.5 3 3
7a 306.3 4 4

8a (center point) 287.5 3 3
9a (center point) 287.5 3 3

10a 306.3 2 2
11a 306.3 2 4
12a 325 3 3
13a 250 3 3
roduct and process development.

rotatable second-order design for the kth factor (3rd in this case).
Note that hybrid designs are generally better than a small central
composite design in terms of prediction error at the perimeter of
the design but like small central composite designs, are still highly
sensitive to outliers and/or missing data (Anderson and Whitcomb,
2005; Myers et al., 2009). The DOE runs were performed in a ran-
dom order. The DOE was created in Design Expert 7.13 (State-Ease
Inc., MN) and the analyses including effect, response surface anal-
ysis and optimization were conducted in JMP 8 (SAS Institute Inc.,
NC).

2.2. Process and equipment

The manufacturing process of this product involves high shear
wet granulation, milling, blending, compression and coating. The
DOE batches were conducted in small-scale equipment. The small-
scale batches were manufactured at 1 kg scale using a Lodige
high shear granulator. The API, croscarmellose sodium (disinte-
grant) and microcrystalline cellulose were pre-blended to obtain a
uniform mix. Post pre-blending, the aqueous binder solution com-
prising of Povidone/poloxamer was added to the dry mix under
high shear mixing with the chopper and the impeller on. The addi-
tion rate was varied to maintain the same addition time for the
binder solution. At the end of binder addition, any material adher-
ing to the walls was scraped down and wet massing conducted
with both the impeller and the chopper on. After wet massing, the
wet granules were manually screened through a 4.0 mm screen
and dried in a fluidized bed drier. The dried granules were then
manually dry screened through a 0.8 mm screen and blended
with extragranular microcrystalline cellulose and croscarmellose
sodium in a turbula blender. The resultant blend was then lubri-
cated with magnesium stearate for times specified per the DOE in
a turbula blender. The final tablet blend was then compressed to
tablets on a Riva-II Minipress.

2.3. Roadmap from knowledge space to design space

All DOE batches were successfully produced and all pro-
vided satisfactory dissolution profiles. Good compressibility was
achieved for all batches. However, poor flow was observed for some
DOE batches, evidenced by funnel flow or even ratholing during
tablet compression on the Riva-II Minipress. The poor flowability
subsequently resulted in tablet weight variation in some cases. It
was therefore decided to delve into the root cause of the flow issue,
and optimize the critical process parameters (CPPs) to achieve
desired flowability.

The roadmap from knowledge space to design space for ensuring
maximal tablet blend flow of this product can be depicted in Fig. 2.

3. Results and discussion

3.1. DOE effect and response surface analysis

As described earlier, a hybrid response surface design was used

to study how three critical process parameters impact key response
variables (CQAs). The design factors (CPPs) studied were: (1) water
amount (250–325 g); (2) wet massing time (1–5 min); (3) lubrica-
tion time (1–5 min). The response variables (manufacturability and
final product CQAs) studied were as follows:
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Fig. 2. Roadmap to establish design space from knowledge space by DOE, response surface analysis and optimization.

Table 2
Sorted effect estimates for all terms used in the model.

Term Estimate S.E. t ratio Prob > |t|
(Lube time (min) − 3) × (wet massing time (min) − 3) −1.55 0.219294 −7.07 0.0058*

Lube time (min) −0.9375 0.13429 −6.98 0.0060*

(Lube time (min) − 3) × (lube time (min) − 3) −0.671118 0.096829 −6.93 0.0062*

(Wet massing time (min) − 3) × (wet massing time (min) − 3) −0.456118 0.096829 −4.71 0.0181*

(Lube time (min) − 3) × (water (g) − 287.5) −0.03258 0.007143 −4.56 0.0198*

(Water (g) − 287.5) × (water (g) − 287.5) 0.0009987 0.000284 3.52 0.0389*

Water (g) −0.014082 0.006216 −2.27 0.1084
Wet massing time (min) 0.1975 0.13429 1.47 0.2377

0.007143 1.14 0.3386
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(Wet massing time (min) − 3) × (water (g) − 287.5) 0.0081117

* p < 0.05.

Tablet blend flow indicated by ratings from visual observations
of ratholing/funnel flow, Carr index, and shear cell FFC values;
Compressibility represented by varied compression force used to
achieve target hardness of 14–16 kp;
Tablet dissolution profiles in 0.1 N HCL and pH 5 acetate buffer
with 0.5% (w/w) CTAB dissolution methods.

DOE effect analysis was performed on all response variables.
nly effect/response surface analysis on tablet blend flow repre-

ented by shear cell FFC values will be discussed in this paper.

.1.1. Effects on tablet blend flow
The flow of final tablet blend was evaluated using FFC values

rom a shear cell tester (RST-XS by Dietmar Schulze, Germany).
able 2 displays sorted effect estimates of model terms on the
FC value. It can be seen that the interaction of lubrication
ime and wet massing time impact FFC the most, followed by

ubrication time, the 2nd order lubrication time and wet mass-
ng time, the interaction of water and lubrication time, and the
nd order water amount. All these terms have p-values <0.05
nd thus are significant on influencing flow represented by FFC
alues. Fig. 3. Interaction profile of design factors on shear cell FFC.
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Fig. 4. ANOVA for tablet blend flow represented by shear cell FFC.

Fig. 5. Prediction profiler for each input variable.
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As shown in Fig. 3, the interaction profile illustrates that how
ependent the effect of one factor is on the level of another factor
n the response-tablet blend flow. In other words, the interaction
rofiles explain how the three factors interact one another in terms
f the response variable, FFC. It can be observed that

At lower wet massing time, higher lubrication time leads to higher
FFC (better flow) while lower lubrication time results in lower FFC
(worse flow). The effect on flow reverses at higher wet massing
time. This could be explained by the fact that at low wet mass-

ing times, the granule formation is incomplete and that flow may
be poor to begin with, any increases in lube times would then
be expected to improve flow by reducing inter-granular friction.
At higher wet massing times, the effect is reversed due to the
fact that the granules have good flow to begin with and long

Fig. 7. Multivariate data modeling in th
rs to achieve maximal flow.

lubrication times may result in over lubrication that may worsen
flow.

- The impact of lubrication time on flow is larger with higher water
amount; and the impact of water amount on flow is smaller with
higher wet massing time.

- At lower water amount, the level of either wet massing time
or lubrication time does not appear to impact FFC significantly.
Increasing lubrication time at higher water amount results in a
rapid decrease in FFC, while increasing wet massing time at higher
water amount leads to higher FFC (better flow). An increase in

water during granulation has been found to affect the granula-
tion characteristics including granulation endpoint and granule
particle size. Also the size and shape and the granule hardness
has been shown to change at higher water amounts (data not
shown). All of these factors can then affect the way the granules

e tablet manufacturing process.
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behave toward the lubricant and lubrication times. Increasing
wet massing can promote the free available water between gran-
ules into the granules and modify the morphology. Increased wet
massing at high water amounts has resulted in spherical gran-
ule morphology as observed through a particle video microscope
(PVM). These spherical particles are expected to have better flow
characteristics and high FFC values.
An increase in water amount can be compensated for an increase
in wet massing time and/or a decrease in lubrication time to pro-
duce a better flow.
A final model fit for response-tablet flow was performed
fter the insignificant model terms were removed to make the
odel more parsimonious. The ANOVA and model fit statistics are

ummarized in Fig. 4. Evaluative statistics indicate a very good
odel fit, with R2 adjusted of 0.887. Model is significant with p-

Fig. 9. Score contribution plot showing variables contributing to the
Pharmaceutics 382 (2009) 23–32

value of 0.0017, while lack of fit is insignificant with p-value of
0.4259.

3.1.2. Establish design space through response surface analysis
and optimization

There are different approaches to establish design space for a
product (ICH, 2008a,b). In this work, response surface methodol-
ogy in conjunction with optimization was used to establish design
space to achieve desired tablet blend flow and dissolution. Per ICH
Q8 guidance, design space is a multi-dimensional combination and
interaction of input variables/process parameters that ensure prod-
uct quality. The statistical effect analysis verified that the selected
process variables and/or their interactions have shown significant
effects on the manufacturability CQA – blend flow. The linkage
between CPPs and CQAs was established through response surface
modeling.

The quadratic response surface of FFC as a function of wet mass-
ing time and lubrication time (holding water constant) is shown in
Fig. 5 (upper left), and that as a function of water and wet massing
time (holding lubrication time constant) in Fig. 5 (upper right).

The prediction profiler in Fig. 5 (bottom) displays profile traces
for each input variable, water, wet massing time and lubrication
time. The profile traces can be viewed as cross-sectioning of the
response surfaces. The profiler is a way of changing one variable at
a time and looking at the effect of a design factor on the predicted
response-FFC. The profiler re-computes the profiles and predicted
responses (in real-time) as the value of the design factor is varied
(Anderson and Whitcomb, 2005; Myers et al., 2009).

Optimization is an approach to search along response sur-
face for optimal range of input variables to satisfy a goal such as
maximizing/minimizing/targeting a response variable. For more
information, see references Bolhuis et al. (1995), Lundstedt et al.
(1998), and Myers et al. (2009). The objective of optimization here
is to maximize FFC or flowability through the prediction profiler as
shown in Fig. 6. A critical step of optimization is to define appro-

priate desirability functions for both responses and design factors.
In JMP 8, desirability value ranges from 0 to 1, with 1 represent-
ing most importance. In terms of response, a higher FFC value of
the blend indicates better blend flow. Therefore, more desirabil-
ity was given to higher FFC values in the desirability function for

difference between batch 12a and the average of all batches.
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Fig. 10. Loading plot (p1–p2

esponse, FFC, in Fig. 6. Once the desirability function for a response
as changed, the desirability traces will change accordingly for
esign factors. An interactive study of desirability traces for both
esign factors and a response variable provides a useful means
o visualize optimization and obtain a rough idea of where the
ptimal ranges of design factors might be according to a desired
esponse. After the objective function and constraints were spec-
fied in Fig. 6, a searching algorithm was then applied to search

esponse surfaces or multi-dimensional space for optimal solutions
hat would satisfy optimization criteria. It is important to recognize
hat design space in many cases needs to be searched or defined
hrough the above approach, instead of being a simple collection
f ranges of design factors. A number of optimization solutions

ig. 11. Cumulative R2 (R2VY(cum)) and Q2 (Q2VY(cum)) for CTAB dissolution at 10, 15,
00%).
aying variable relationships.

from maximizing blend flow were generated based on defined
desirability for both design factors and response. An optimal solu-
tion with water amount = 307 g, wet massing time = 4 min, and
lubrication time = 2 min, was used for confirmation. The predicted
FFC value was 11.6 from this optimal solution. A confirma-
tory batch using this optimal setting showed excellent flow, FFC
value 10.2.
3.2. Multivariate analysis of all available variables

In addition to the variables studied in the DOE effect analysis,
there are many other variables across all unit operations, includ-
ing both process parameters and quality attributes. The tablet

30, 45 and 60 min, respectively. The y-axis represents the percent (full scale is 1, or
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study why batch 12a is more different and identify which variables
Fig. 12. Predicted vs. measured plot for CTAB dissolution at 30 min.

anufacturing process of this product consists of multiple unit
perations, each of which generates a large amount of multivariate
ata resulting in as many as hundreds of variables. See Fig. 7. Data
rom multiple unit processes can be arranged as 2D or 3D block
ets, where row represents batches, and column represents vari-
bles. If available, the third dimension may be time points within
batch for some unit operations where process parameters are

cquired during batch evolution, resulting in a 3D matrix. It should
e noted that variables from the same or different unit operations
ay be heavily correlated, and upstream unit operations/variables

re likely to impact on downstream unit operations/variables. The
lucidation of such complex relationships requires use of multivari-

te methods such as PCA and PLS. More information can be found
n reference Wold et al. (1987), Martens and Naes (1989), Miller
1995), Forinaa et al. (1998), Esbensen (2002), and Kourti (2004).
t would be difficult to study relationships of such a large number

Fig. 13. Score contribution plot for pH 5 acetate b
Pharmaceutics 382 (2009) 23–32

of variables through the DOE effect analysis as only limited num-
ber of variables can be practically handled. Thus, PCA and PLS are
multivariate methods complementary to the DOE effect/response
surface analysis for improved process understanding. The methods
can be performed on individual unit operations separately, as well
as combined unit operations jointly, depending on the objective of
the study. All multivariate analysis was performed in SIMCA-P+12
by Umetrics Inc., NJ.

3.2.1. Principal component analysis (PCA)
The objective of PCA is to examine both batch/sample and

variable relationships in this DOE campaign. All 13 DOE batches
were included in the PCA modeling. Approximately 70 variables
were analyzed, including process parameters from granulation,
blending, compression, and quality attributes such as particle
size/distribution, bulk/tapped density, LOD, hardness and dis-
solution. PCA was performed to study multiple combined unit
operations as a whole, as well as individual unit operations sep-
arately.

3.2.1.1. Batch relationship. Scores scatter 3D plot (t1–t2–t3) in
Fig. 8 reveals the possible presence of outliers, groups, or patterns
among batches. The scores t1, t2 and t3, are the orthogonal latent
variables, or principal components summarizing the X-variables.
The score t1 (first component) explains the largest variation of the
X space 33.4%, followed by t2 explaining 15.7% and t3 13.5%. Obser-
vations near each other are more similar, while those far away from
each other are more dissimilar. The scores plot exhibits a good
degree of variations among the DOE batches, which is expected
as the three DOE design factors are varied to deliberately create
systematic variations. No obvious groupings can be observed, and
no outliers lie outside the ellipse (95% confidence interval). It can
be seen that the center-point batches 6a, 8a and 9a are near each
center, indicating good reproducibility. Batch 12a appears more dif-
ferent from the rest of batches as it is located further away from
the other batches. A score contribution plot, Fig. 9, can be used to
are contributing factors to the difference most. The score contribu-
tion plot displays the contributing variables in a sorted order. The
variables with larger positive and lesser negative values are more
important in differentiating batch 12a from the rest. It is clear that

uffer with 0.5%CTAB dissolution at 30 min.
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Fig. 14. VIP plot displaying very import

atch 12a exhibits significantly coarser particle size in granules at
ranulation stage, after drying and final blend.

.2.1.2. Variable relationship. Loading plot in Fig. 10 shows rela-
ionships among the X-matrix variables, excluding final drug
roduct CQAs. Variables near each other are positively correlated,
hile those opposite to each other from origin are negatively cor-

elated. Variables close to origin are less influential to the model,
hile those away from origin are more influential. However, care
ust be taken when interpreting variable relationships in a loading

lot. The amount of explained variations by the plotted princi-
al components should be used in combination with the distance
etween variables. If plotted principal components do not account
or sufficient variation, then the third or later components should
lso be plotted to examine the distances among variables. For
nstance, the first two components in this PCA model explain 32%
nd 15%, respectively. Although Carr index and FFC appear near
ach other in loading plot (p1–p2), they are not close to each other
y examining loading plot (p1–p3).

Key interpretations from the loading plot (Fig. 10), along with
ater principal components (not shown here), are as follows:

Overall quality attributes such as particle size exhibit more vari-
ations than process parameters as they are further away from
origin.
Particle size and distribution span major variation of the data set,
e.g. D10, D50 and D90 from wet granulation, and particle size
distribution from final tablet blend.

.2.2. Regression analysis using partial least squares (PLS)
The objective of PLS is to study how all available material

ttributes and process parameters, besides the three design fac-
ors, impact intermediate and final product quality attributes. PLS
as used here to establish relationship between 65 X-variables

material attributes/process parameters) and 5 Y-variables (CTAB
issolution profiles).

Fig. 11 displays the cumulative R2 and Q2 for the Y matrix, using

hree components. R2Y is the percent of the variation of Y explained
y the model indicating how good the model fit is, while Q2Y is the
ercent of the variation of Y that can be predicted by the model. A
ood model should have both R2Y and Q2Y above 0.5. As can be seen
n Fig. 11, a good degree of correlation can be established for CTAB
riables in terms of dissolution profiles.

dissolutions, especially at 10–30 min, evidenced by R2Y and Q2Y
greater than 0.5. However, further model validation/assessment
will be needed if the model is to be used for future prediction. It
should be noted that the primary purpose of the PLS model here is
to study the relationship between X and Y, not necessarily to use
the model for future prediction.

Fig. 12 shows predicted vs. measured plot for CTAB dissolution at
30 min from calibration model. Higher R2 and slope indicates good
model fit. Batch 2a clearly shows lowest dissolution. With score
contribution plot, the variables contributing to the low dissolution
can be identified and ranked according to its importance. As can be
seen in Fig. 13, batch 2a shows noticeably much larger FFC value,
indicating good flowability but slower dissolution. This is consis-
tent with the DOE effect analysis and optimization. A compromise
will have to be reached between blend flow and tablet dissolution
to achieve optimal results.

The VIP (variable importance) in Fig. 14 reflects the importance
of terms (variables in the plot) in the model both with respect to Y
(CTAB dissolution), i.e. its correlation to all the responses, and with
respect to X (the projection). VIP is normalized, and the average
squared VIP value is 1. Terms in the model with a VIP > 1 are deemed
important to the model. It appears that FFC, LOD, particle size, 1 and
9 min power consumption values, compression force, wet massing
time, water amount, and some others are important variables with
respect to CTAB dissolution.

4. Conclusion

The case study exemplified the application of QbD princi-
ples and tools to drug product and process development. It was
demonstrated that the DOE effect/response surface analysis was
a powerful tool in studying the effects of selected factors (water
amount, wet massing time and lubrication time) on response
variables, and establishing design space to ensure the desired
manufacturability—tablet blend flow. Multivariate analysis (PCA
and PLS) showed its figures of merit in being capable of handling
all available variables, most of which could not be included in
the DOE effect/response analysis. With multivariate data analysis,

complex multivariate relationships of both batches and vari-
ables can be understood holistically, as well as how material
attributes/process parameters impact on intermediate and final
product quality attributes (e.g. CTAB dissolution). It is clear that
DOE effect/response surface analysis and multivariate data analysis
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re complementary tools for pharmaceutical product and process
evelopment. The level of understanding would not be achieved
ith either approach alone.

It is evident from this study that the combined use of exper-
mental design, response surface modeling, optimization, and

ultivariate data analysis (PCA and PLS) facilitates enhanced prod-
ct/process understanding, and offers opportunities for developing
ontrol strategies to ensure final product quality. The integrated
ultivariate approach will continue to be implemented in all steps

f our formulation and process development. With availability of
ore advanced process automation and data infrastructure sys-

em, it is only a matter of time before the main elements of such an
ntegrated multivariate approach are implemented real-time, from
rocess understanding to multivariate statistical process control.
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